Statistics

  1. Let \(x_1, x_2, …x_n\) be i.i.d. random variables that follow the Poisson distribution with parameter \(\lambda\), i.e. \(f(x;\lambda)=\dfrac{e^{-\lambda}\lambda^x}{x!}\).

    1. (10 points) Find the methods of moments estimator for \(E[x_i]=\lambda\).

    2. (10 points) Is this estimate unbiased? (show your work)

    3. (10 points) Write an R function that would yield Methods of moments estimate for sample mean of a random sample of iid Poisson variables.

      1. Argument: A vector of $X$ values

      2. Output: MM estimate of $E[x_i]=\lambda$

  1. (5 points) Use your function and \(x\) defined below to calculate the MM estimate of \(\lambda\).
set.seed(1)
x=rpois(100, 3.6)

NEED A CUSTOMIZED PAPER ON THE ABOVE DETAILS?

Submit your order now!